domingo, 23 de mayo de 2010

Unidad 5
EL ENLACE QUIMICO
El enlace químico es la fuerza que une a los atomos para formar las moléculas, es un proceso de estabilización por interacciones electrónicas donde cada átomo trata de alcanzar la configuración electrónica del gas noble más cercano. Por lo general los gases nobles tienen 8 electrones de valencia("regla del octeto").
La energía de estabilización se denomina también la energía de enlace y corresponde además de la energía liberada cuando se forma el enlace a la energía necesaria para romper el enlace.



TIPOS DE ENLACES Y POLARIDAD DE LOS ENLACES
ENLACE IONICO. Cesión de electrones, de parte de un átomo fuertemente electropositivo a otro fuertemente electronegativo. Formación de iones positivos y negativos y atracción electrostática entre ellos.
ENLACE COVALENTE. Compartición de parejas de electrones entre átomos de parecida o igual electronegatividad. Electrones compartidos con spines opuestos y atracción magnética.

Ejemplos :


A continuación una visión total, o sea las diferentes situaciones en función de la diferencia de electronegatividad entre los átomos involucrados.



EL ENLACE QUÍMICO Y LA MECANICA CUANTICA

La Mecánica Cuántica contempla la combinación matemática de las funciones de ondas de orbitales atómicos para dar orbitales moleculares. La combinación produce dos orbitales moleculares.

ENERGÍA DE LOS ORBITALES MOLECULARES ENLAZANTES Y ANTIENLAZANTES EN FUNCIÓN DE LA DISTANCIA INTERATÓMICA

La suma de funciones atómicas da un orbital molecular enlazante donde se sitúa la pareja de electrones con spines opuestos . Este se puede visualizar como la superposición de los orbitales atómicos. Existe una estabilización a medida que los átomos se acercan pues predominan las fuerzas de atracción entre los atomos sin embargo si los átomos se acercan demasiado hay una desestabilización producto de fuerzas de repulsión interatómica. La menor energía corresponde a un pozo de energía en que se encuentran los átomos en equilibrio respecto de las atracción y la repulsión interatómicas. Este pozo de energía determina la distancia internuclear llamada también longitud de enlace.
La diferencia de funciones atómicas genera un orbital molecular antienlazante marcado por fuerzas de repulsión en donde la la mayor estabilidad se alcanza cuando los átomós están separados a gran distancia. En este orbital los electrones se encuentran con spines paralelos (ruptura del enlace).




TIPOS DE UNIONES
Los gráficos siguientes además de reforzar los conceptos de orbitales moleculares enlazantes y antienlazantes y sus implicancias desde el punto de vista de la energía nos muestran dos situaciones que apuntan más bién al tipo de orbitales que intervienen o a distintas formas de unión.

Combinacion de orbitales s


Unión s (sigma)
Orbital Molecular enlazante con superposición de orbitales atómicos sobre linea internuclear

Combinación de orbitales atomicos p


Unión s (sigma)
Orbital Molecular enlazante con superposición de orbitales atómicos sobre linea internuclear.

TIPOS DE ENLACES Y UNIONES



GEOMETRÍA MOLECULAR

LA HIBRIDACIÓN DE ORBITALES
La disposición de los átomos en el espacio se determina experimentalmente mediante la técnica de difracción de rayos X. Para hacer concordar la información experimental con aspectos teóricos se ha visto la necesidad de formular un modelo de reordenamiento posicional de los orbitales atómicos. Esta formulación de orden matemático se conoce como hibridación de los orbitales atómicos.
Existen diferentes formas de hibridación y la forma que en definitiva adopte un átomo decidirá la orientación espacial de sus orbitales y por consecuencia la GEOMETRIA MOLECULAR .

Hibridaciones más simples.







CRITERIOS PARA DECIDIR LA HIBRIDACIÓN
1:- CRITERIO MULTIPLICIDAD DE LOS ENLACES
Hay que observar la multiplicidad de los enlaces, esto es, cuántas uniones pi deben formarse. Para cada unión pi un átomo debe disponer un orbital p.
Dos uniones pi obligan a un átomo a tener 2 orbitales p, o sea que, la hibridación debe ser sp.




2.-CRITERIO DE REPULSIÓN DE PAREJAS DE ELECTRONES
Las parejas de electrones, ya sean enlazantes o bién no enlazantes, se repelen por tener igual carga. Entonces el criterio obliga a dar el máximo ángulo de separación a todas las parejas de electrones.
En los graficos siguientes los electrones del átomo los representamos como puntos azules y los electrones del átomo vecino con el que se enlaza como puntos rojos. Así, las parejas enlazantes se grafican como puntos azul y rojo indicando electrones que pertenecen al átomo en cuestión y al otro átomo respectivamente y las no enlazantes del átomo como un par de puntos azules.

Como se puede observar, si el número de parejas de electrones alrededor de un átomo es tres la hibridación es sp,
En cambio, si el número de parejas de electrones es cuatro la hibridación es sp2.
Cuando existen solamente uniones s la hibridación se determina sólo en base del criterio de repulsión de parejas.
Cuando hay sólo una unión s no hay hibridación.


Dos parejas de electrones la hibridación es sp , tres parejas de electrones la hibridación es sp2 y cuatro parejas de electrones la hibridación es sp3 .

OTRAS HIBRIDACIONES Y LAS PRINCIPALES GEOMETRIAS MOLECULARES



APLICACIONES:












LA LONGITUD Y LA ESTABILIDAD DE LOS ENLACES DE ATOMOS HIBRIDIZADOS.

Puesto que los orbitales s son pequeños y de baja energía comparados con los orbitales p que son de mayor alcance y mayor energía, los enlaces de átomos hibridizados mantendrán aquellas características según el grado de carácter s o p tenga cada situación.
Unidad 6
PROPIEDADES FISICOQUIMICAS DE LAS SUSTANCIAS PURAS
Los tipos de enlaces, la direccionalidad de éstos, los rasgos eléctricos y otras características moleculares determinan las propiedades fisicoquímicas de las sustancias.
La fortaleza del enlace está dada por la energía necesaria para romper el enlace y ésta a su vez es directamente proporcional a la energía de estabilización o energía liberada cuando el enlace se forma.
El enlace covalente es el más fuerte, lo sigue el iónico y finalmente el metálico que es el más débil.


MOLECULAS GIGANTES
Son arreglos de átomos, unidos mediante fuerzas de enlace químico, en que no está definido el tamaño del sistema. Por lo general son arreglos de gran tamaño. La proporción de distintos átomos se conoce y se representan estos sistemas por su fórmula empírica.
Hay tres grandes tipos de moléculas gigantes, las de enlace iónico, las de enlace covalente y las de enlace metálico.

COVALENTES TRIDIMENSIONALES
Son arreglos tridimensionales de átomos iguales o diferentes unidos por enlaces covalentes y dispuestos en el espacio siguiendo las reglas de la hibridación. Son las estructuras más rígidas, duras o resistentes que se conocen.
Sus temperaturas de fusión son muy altas y en muchos casos se descomponen químicamente por el calor antes de entrar en fusión. Por otra parte la separación de las partículas por acción de moléculas de un solvente es imposible, por lo tanto son completamente insolubles.
El Carbono en su forma de diamante ( hibridación sp3 ) es un ejemplo de ésta categoría.



COVALENTES BIDIMENSIONALES
Es cuando la red de enlaces covalentes se teje en dos dimensiones. Los mismos conceptos de infusibilidad e insolubilidad que para las mallas trididimensionales pero no así en lo que se refiere a la dureza pues las fuerzas de atracción entre las mallas bidimensionales es débil. Por esa razón estas sustancias son blandas en el sentido del desprendimiento de las mallas.
El ejemplo típico es el Carbono en su forma de grafito en que los C están hibridizados sp2 .El grafito es conductor de la corriente eléctrica.


COVALENTES UNIDIMENSIONALES

Corresponde a las sustancias denominadas polímeros, largas cadenas de unidades conectadas por enlaces covalentes.
-Los homopolímeros que repiten unidades iguales (-A-A-A-A-A-A- ; -(A)- n ).
-Los copolímeros que repiten unidades distintas ( A-B-A-B-A-B- ; ( -A-B-) n ).
Son cadenas largas llamadas también macromoléculas y por ésta razón es que interaccionan unas con otras de manera significativa.
En los polímeros, en primer término, la fusión y la solubilización están determinadas por la magnitud de las fuerzas de atracción entre las macromoléculas, en principio altas, precisamente por la longitud de las cadenas. Sin embargo, existe un segundo factor determinante, el factor entrópico o desorden que pueden alcanzar las estructuras una vez solubilizadas o fundidas.
Los polímeros flexibles o plegables forman estructuras sólidas bifásicas (cristalinas – amorfas) que son quebradizas, éstas estructuras se pueden disolver o fundir con relativa facilidad pues cuando alcanzan tales estados la macromoléculas están muy enroscadas, plegadas u ovilladas, en suma desordenadas lo que favorece el proceso de separación de las macromoléculas.

En cambio, las macromoléculas rígidas no tienen favorable el factor entrópico y así son dificiles de fundir y solubilizar. Estos polímeros rígidos, en el sólido son monofásicos y de mucha resistencia.



El grado de endurecimiento o ablandamiento depende de las temperaturas a que se encuentran sometidos los sistemas.
Los procesos de ablandamiento sobrevienen en zonas de temperaturas bien definidas para cada tipo de macromoléculas.
Muchas veces las cadenas macromoléculares sintéticas o naturales se conectan entre sí mediante átomos o grupos de átomos enlazados covalentemente con propósitos tecnológicos precisos. En estos casos las estructuras resultantes semejan a las redes covalentes bi o tridimensionales y así también son sus propiedades, nula solubilidad y puntos de fusión demasiado elevados que amenazan la estabilidad química de las sustancias.


Copolímero de estireno-butadieno (neumáticos) vulcanizado con S.

Este tipo de productos son difíciles de recuperar y reutilizar precisamente por las razones ya mencionadas y constituyen un problema para la ecología por la contaminación del ambiente.

La celulosa es un polímero natural de características estructurales semirígidas y si a ello agregamos que entre las cadenas macromoleculares existen fuerzas de atracción, de alta magnitud como los puentes de H debido a la presencia de mucho grupos de -OH son comprensibles las dificultades para la fusión y la solubilización.


Estructura tipo celulosa

IONICAS.
En estas moléculas gigantes los átomos están unidos por enlaces iónicos. Es decir son un arreglo de iones positivos y negativos que se disponen alternadamente en el espacio compensando sus cargas . La geometría del arreglo es simple cuando los iones positivos y negativos son monoatómicos y además se encuentran en relación 1:1. Cuando los iones son complejos, con grandes diferencias de tamaños o la proporción entre ellos no es simple, los arreglos son complicados y son materia de estudio de la Cristalografía que hace uso de las técnicas de difracción de rayos X para resolver estas situaciones.



Son estructuras de temperatura de fusión elevadas. En estado sólido o cristalino, donde los iones se encuentran atrapados no conduce la corriente eléctrica, pero sí la conducen en estado fundido.
Estas estructuras pueden ser solubilizadas, aunque no siempre, mediante solventes con moléculas polares como el caso de agua. Las moléculas del solvente rodean los iones apuntando sus fracciones de carga al ión de carga opuesta. Así los iones solvatados son separados al debilitarse el enlace iónico. De ésta forma los iones disueltos constituyen partículas para el flujo eléctrico.



METALICAS
Corresponde al caso de los metales. Los átomos metálicos , al ser muy electropositivos se desprenden de sus electrones de valencia pasando a formar iones positivos. Por su parte los electrones que han perdido su pertenencia a un átomo determinado se mueven entre los iones constituyendo una nube de electrones delocalizados. Esta nube de electrones que une a iones positivos es el enlace metálico.



Los puntos de fusión de los metales son medianamente altos. La naturaleza de movilidad del enlace metálico confiere a los metales su blandura, es decir los convierte en dúctiles y maleables.
La movilidad de los electrones les permite tener a capacidad de conducción de la corriente eléctrica y también es responsable de la conductividad térmica.



MOLECULAS CONVENCIONALES
Son aquellos sistemas formados por moléculas que se encuentran claramente definidas, se conoce el número exacto de átomos y de qué elementos está constituída la molécula. Se representan por las llamadas fórmulas moleculares reales.

En su gran mayoría las moléculas de ésta categoría unen sus átomos con enlaces covalentes y al expresar esto pensamos en muchas moléculas simples formadas entre no metales y en la inmensa cantidad de compuestos orgánicos constituídos principalmente por los elementos C, H, O, N, P, S.
Sin embargo al momento de racionalizar las propiedades fisicoquímicas de este tipo de estructuras, el tipo de enlace interatómico ( covalente) y su fortaleza no cuenta pués en este caso lo determinante son las fuerzas entre moléculas o fuerzas intermoleculares y en algunos casos son fuerzas intramoleculares las determinantes de las propiedades.
En todo caso las fuerzas intermoleculares son de naturaleza eléctrica, pero las hay de diferente naturaleza y magnitudes pero siempre dependen en definitiva de las características eléctricas, del tamaño y geometría de las moléculas.
No conducen la corriente eléctrica en ningún estado físico y también son malos conductores del calor.

EFECTOS COMPARADOS DE DISTINTAS FUERZAS INTERMOLECULARES SOBRE LAS TEMPERATURAS DE EBULLICIÓN



Las fuerzas de Van der Waals son comparativamente las fuerzas intermoleculares de menor intensidad pero pueden existir grandes diferencias de sus magnitudes entre moléculas que las poseen como único factor de atracción.
Estas diferencias pueden ocasionarse por :
a) por significativa diferencia del tamaño de las moléculas.
b) por la presencia de átomos de mucha diferencia en la cantidad de electrones o de muy distinta polarizabilidad electrónica.
c) por la circunstancia de presentar una geometría muy diferente.

No hay comentarios:

Publicar un comentario